Remote Sensing Experience in Production Fields*

*Funding provided by Wisconsin Corn Promotion Board, Wisconsin Soybean Marketing Board and North Central Soybean Research Program. The UW-Madison Environmental Remote Sensor Center provided support for processing remotely sensed data.
Objectives:

- Evaluate remotely sensed data and relate to anomalies found on the ground.
- Evaluate multi-spectral and hyper-spectral remotely sensed data with respect to crop health.
- Evaluate issues associated with collecting remotely sensed data on production fields.
Application of Remote Sensing in Precision Agriculture

• Improve crop scouting efficiency by identifying field anomaly locations

• Identify cause of the field anomaly
Characteristics of Remote Sensing

• Spatial resolution - size of smallest object observed
• Spectral response - spectral bands - color (visible) and infrared
• Spectral resolution - differentiate between spectral bands
• Frequency of coverage
Data Collection

- Fields (Seven crop production fields in corn soybean rotations from 35 to 105 acres)
- Field data
- Remotely sensed data
- Duration - 2 to 5 seasons
The map illustrates the location of the WI Soybean Project Fields. The fields are marked by green icons on a map of Wisconsin. The locations are labeled as follows:

- Siewert
- Franz
- Punwick
- Caldwell
- Watzke
- Stone Corp
- Madison
Field data

• Soil sampling, 1 acre grid, once during initial season
• Plant stand
• Plant height
• Field scouting-anomalies
• Yield
• Moisture
Sources of Remotely Sensed Data

• Aircraft
 NASA-ATLAS (15)*
 Airborne Data Systems(7)
 3di LLC(16)
 Spectral Visions(120)
• Satellite(4)
• Radiometer, Handheld(8)

* Number of bands
Sources of Remotely Sensed Data (cont.)

NASA ATLAS Spectral Coverage (15 bands)

<table>
<thead>
<tr>
<th>Visible - 4</th>
<th>Wavelength (nm)</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450-520</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>520-600</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>600 - 630</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>630 - 690</td>
<td>Red</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infrared (Near) - 4</th>
<th>Wavelengths (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>690 - 760</td>
</tr>
<tr>
<td></td>
<td>760 - 900</td>
</tr>
<tr>
<td></td>
<td>1550 - 1750</td>
</tr>
<tr>
<td></td>
<td>2080 - 2350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infrared (Thermal) - 6</th>
<th>Wavelengths (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8200 - 8600</td>
</tr>
<tr>
<td></td>
<td>8600 - 9000</td>
</tr>
<tr>
<td></td>
<td>9000-9400</td>
</tr>
<tr>
<td></td>
<td>9600-10200</td>
</tr>
<tr>
<td></td>
<td>10200-11200</td>
</tr>
<tr>
<td></td>
<td>11200 - 12200</td>
</tr>
</tbody>
</table>

nm-nanometers
Sources of Remotely Sensed Data (cont.)

Spectral Visions:
 Number of Bands: 120
 Range: 471-828 nm (3 nm widths)

3di LLC:
 Number of Bands: 16
 Range: 530 - 900 nm

Airborne Data Systems
 Number of Bands: 7
 Range: 400 - 1400 nm
Sources of Remotely Sensed Data (cont.)

Okonos:

Number of Bands: 4
Visible - 3(480, 551, 665), NIR - 1(805)
Sources of Remotely Sensed Data (cont.)

Okonos:
 Number of Bands: 4
 Visible - 3(480, 551, 665), NIR - 1(805)

Radiometer (Handheld)
 Number of Bands: 8
 Range: 460-810
Image Data Collected of Targeted Agricultural Fields

1997
1. May 12. Airborne Data Systems Multispectral and Thermal
2. July 5. Airborne Data Systems Multispectral
4. September 26. ATLAS 15-band and CIR photography

1998
1. July 20. Airborne Data Systems Multispectral
2. September 9. Airborne Data Systems Multispectral

1999

2000
1. July 12. Radiometer, Handheld
2. August 5. Airborne Data Systems Multispectral

2001
1. May 5. Ikonos
2. July 10. Ikonos
3. August 21. 3di Multispectral
4. August 23. Ikonos

Other data sets:
- Dane Co. 1m orthophotos
- Assorted GIS coverages
NASA-ATLAS
Near-Infrared (nm)
690-760
760-900
1550-1750
Soybean Yield Map
Soybean Yield Map

Remotely Sensed Data:
630-690 (Red)
690-760 (NIR)
760-900 (NIR)
Causes of some anomalies

- Perennial weeds
- Spray skips
- Wheel tracks (from POST herbicide application)
- White mold
- Waterways
Need a cloudless sky

Satellite Image

July 10, 2001

File: Po-73601 nrg

Field of Interest
Problem:
Error in Flight Altitude- Flying 250 feet lower than planned
Problem:

Error in Flight
Altitude- Flying
250 feet lower than planned
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas
Conditions for collecting remotely sensed data - cloudless skies
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas
Conditions for collecting remotely sensed data - cloudless skies
Remotely sensed data needed:
 Spatial resolution 3 to 6 feet
 Spectral bands: 3 in visible and one in near-infrared
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas
Conditions for collecting remotely sensed data - cloudless skies
Remotely sensed data needed:
 Spatial resolution 3 to 6 feet
 Spectral bands: 3 in visible and one in near-infrared
Collection must be timely
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas.
Conditions for collecting remotely sensed data - cloudless skies.
Remotely sensed data needed:
- Spatial resolution 3 to 6 feet
- Spectral bands: 3 in visible and one in near-infrared
Collection must be timely.
Data availability must be timely.
Concluding Remarks:
Remotely sensed data can be used to identify anomaly areas
Conditions for collecting remotely sensed data - cloudless skies
Remotely sensed data needed:
 Spatial resolution 3 to 6 feet
 Spectral bands: 3 in visible and one in near-infrared
Collection must be timely
Data availability must be timely
Data must be consistent