Joel Pedersen

Pedersen photo 20150213 v2

Joel Pedersen – Professor

Environmental organic and biophysical chemistry; behavior of organic chemicals, macromolecules and nanoparticles in terrestrial and aquatic environments.

UW-Madison, Department of Soil Science
1525 Observatory Drive
Madison, WI 53706-1299, USA
Office: 103 Hiram Smith Annex

Phone: 608.263.4971
Fax: 608.265.2595


Program Affiliations

Associate Editor, Environmental Science: Nano


  • BS (Magna Cum Laude) Biological Sciences, 1988, Univ. of California Irvine
  • MS Environmental Engineering Science, 1990, California Institute of Technology
  • Dr Env Environmental Science and Engineering, 2001, Univ. of California Los Angeles

Awards and Honors

  • 2018-present Vilas Distinguished Achievement Professor
  • 2012-2017 William A. Rothermel Bascom Professor in Soil Science
  • 2012 Environmental Science & Technology Excellence in Review Award
  • 2006-2011 National Science Foundation Faculty Early Career Development (CAREER) Award
  • 2006 Soil Science Society of America Early Career Professional Award
  • 2001 U.S. Environmental Protection Agency Bronze Medal
  • 1998 Charles F. Scott Fellow (University of California, Los Angeles)
  • 1995 Steve J. Sackler Scholar (University of California, Los Angeles)
  • 1990 Hewlett Foundation Environmental Quality Laboratory Fellow (California Institute of Technology)
  • 1987-1988 Education Abroad Program Contact Scholarship (Germany)
  • 1987 Phi Beta Kappa (University of California, Irvine)

Teaching and Research Overview

The Pedersen research group focuses on environmental interfacial chemistry and studies interfacial processes affecting the behavior of nanoparticles, biomolecules, and organic molecules in terrestrial and aquatic environments. Current research topics include molecular-scale interactions of biomolecules with engineered nanoparticles, the processes governing the environmental transmission of prion diseases, and the interaction of polar and ionizable organic molecules with natural organic matter and mineral surfaces.

The Nano-Bio Interface. Sustainable development of nanotechnology requires molecular-level understanding of the interaction of nanomaterials with biological interfaces, both to design applications that interface with biological systems and to evaluate the potential risks posed by release of nanoscale materials into the environment. Developing such an understanding is a challenging problem because both nanoparticles and biological interfaces (e.g., cell surfaces, proteins) are structurally and chemically complex. Our group focuses on the interaction of nanoparticles with cell membranes and proteins. We are interested in determining how nanoparticle size, shape, and surface chemistry influence attachment to, penetration of, and disruption of cell membranes, and how the composition of membranes impacts their interaction with nanoparticles. Nanoparticles possess high surface energy. When nanoparticles are introduced into environmental or biological media their surfaces tend to acquire a coating, or corona, of molecules from solution to reduce surface energy. The nature of this environmental or biomolecular corona has important consequences for the biological impact of nanoparticles (whether beneficial or adverse) by affecting uptake by and distribution within organisms, interaction with membranes, and recognition by the immune system. Our group is interested in how nanomaterial properties influence the composition of environmental and biomolecular coronas and how such coronas affect interaction with cell surfaces. The interaction of proteins with nanoparticle surfaces may induce conformational changes that alter their function or expose portions of protein to solution that are normally buried within the protein’s structure, triggering unexpected biological responses. We are therefore interested in the conformational changes in proteins induced by association with nanoparticle surfaces. We employ a wide suite of techniques to address these problems. Our work is highly interdisciplinary, and students from all areas of chemistry and related fields are welcome.

Environmental Transmission of Prion Diseases. Prion diseases, or transmissible spongiform encephalopathies, are inevitably fatal neurodegenerative diseases and include Creutzfeldt-Jakob disease and kuru in humans, bovine spongiform encephalopathy (“mad cow” disease) in humans, scrapie in sheep and goats, and chronic wasting disease in deer, elk, and moose. Environmental routes of transmission contribute to the spread of chronic wasting disease and scrapie. The infectious agent in these diseases is a misfolded form of a host-encoded protein referred to as a prion. Prions are notoriously difficult to inactivate, being resistant to sterilization methods that are effective against conventional pathogens. We have provided insight into the environmental transmission of prion disease by demonstrating that association of prions with microparticles dramatically enhances oral disease transmission. We are currently investigating the mechanisms by which this occurs. We have developed exquisitely sensitive methods to detect prions in environmental matrices, allowing us to study their release into and movement within the environment. Methods to sterilize prion-contaminated surfaces are needed to limit the environmental transmission of these diseases and to decontaminate sensitive medical equipment. We are developing new methods to inactivate prions adsorbed to surfaces.

Environmental Chemistry of Polar and Ionizable Organic Contaminants. Pharmaceuticals and personal care product ingredients have emerged as widespread environmental contaminants. Many of these compounds are polar and ionizable organic molecules. The environmental behavior of such compounds is considerably less well understood than that of more widely studied nonpolar organic contaminants such as polychlorinated biphenyls, organochlorine insecticides, and polycyclic aromatic hydrocarbons. Our group is interested in uncovering the mechanisms by which multifunctional pharmaceutical compounds associate with natural colloids because such interaction influences the transformation and bioavailability of these inherently biologically active molecules. In water-stressed areas of the world, treated wastewater is used to irrigate food crops. Conventional wastewater treatment processes do not efficiently remove many pharmaceuticals and personal care product ingredients. Concern exists that irrigation with treated wastewater may lead to the accumulation of these compounds in the edible tissues of plants. Our group is investigating the mechanisms by which polar and ionizable organic compounds accumulate in plants.

Courses Taught

Environmental Organic Chemistry (CEE 502)/Toxicants in the Environment (CEE/MET/Soil Sci 631)
Colloquium in Environmental Toxicology (MET/Soil Sci 606)
Environmental Colloid Chemistry (SS 875)

Current Grants

  • NSF Center for Chemical Innovation: Center for Sustainable Nanotechnology
  • NIH: Shedding, retention and spreading of chronic waste disease prions in the environment
  • USDA CSREES: Influence of rhizosphere pH modulation on plant uptake of pharmaceuticals and personal care product ingredients
  • U.S.-Israel Binational Agricultural Research and Development (BARD) Fund: Uptake of wastewater-derived micropollutants by plants irrigated with reclaimed wastewater
  • USGS: Uptake of prions into plants

Blog on Sustainable Nanotechnology:

Selected Publications


Ehrl, B. N.; Mogusu, E. O.; Kim, K.; Hoffstetter, H.; Pedersen, J. A.; Elsner, M. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation. Environ. Sci. Technol. 2018, 52 (accepted pending minor revision)

Nason, S. L.; Miller, E. L.; Karthikeyan, K. G.; Pedersen, J. A. Plant-induced changes to rhizosphere pH impact leaf accumulation of lamotrigine but not carbamazepine. Environ. Sci. Technol. Lett. 2018,(in press). DOI: 10.1021/acs.estlett.8b00246

McGeachy, A. C.; Caudill, E. R.; Liang, D.; Cui, Q.; Pedersen, J. A.; Geiger, F. M.Counting charges on membrane-bound peptides. Chem. Sci. 2018, 9, 4295-4298. DOI: 10.1039/C8SC00804C

McGeachy, A.; Dalchand, N.; Caudill, E. R.; Li, T., Doğangün, M.; Olenick, L. L.; Pedersen, J. A.; Geiger, F. M. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethyl-ammonium chloride), poly-L-lysine, and poly-L-arginine interacting with lipid bilayers. Phys. Chem. Chem. Phys. 2018, 20, 10846-10856.DOI: 10.1039/c7cp07353d

Plummer, I. H.; Johnson, C. J.; Chesney, A. R.; Pedersen, J. A.; Samuel, M. D. Mineral licks as environmental reservoirs for chronic wasting disease prions. PLoS ONE 2018, 13, e0196745. DOI: 10.1371/journal.pone.0196745


Melby, E. S.; Lohse, S. E.; Park, J. E.; Putans, R. A.; Hamers, R. J.; Murphy, C. J.; Pedersen, J. A. Cascading effects of nanoparticle coatings: Surface functionalization dictates assemblage of complexed proteins and subsequent interaction with model cell membranes. ACS Nano 2017, 11, 5489-5499. DOI: 10.1021/acsnano/7b00231

Troiano, J. M.; McGeachy, A. C.; Olenick, L. L.; Kuech, T. R.; Caudill, E. R.; Fang, D.; Hong, J.; Pedersen, J.A.; Cui, Q.; Geiger, F. M. Quantifying electrostatics in polycation-lipid bilayer interactions. J. Am. Chem Soc. 2017, 139, 5808-5816. DOI: 10.1021/jacs.6b12887

Mensch, A.; Hernandez, R. T.; Kuether, J. E.; Torelli, M. D.; Feng, Z. V.; Hamers, R. J.; Pedersen, J. A. Natural organic matter impacts the interaction of functionalized diamond nanoparticles with model and actual bacterial membranes. Environ. Sci. Technol. 2017, 51, 11075-11084. DOI: 10.1021/asc.est.7b02823.

Zhang, Y.; Fry, C. G.; Pedersen, J. A.; Hamers, R. J. Dynamics and morphology of nanoparticle-linked polymers elucidated by NMR. Anal. Chem. 2017, 89, 12399-12407. DOI: 10.1021/acs.analchem.7b03489

McGeachy, A.C.; Olenick, L. L.; Troiano, J. M.; Lankone, R. S.; Melby, E. S.; Kuech, T. R.; Ehimiaghe, E.; Fairbrother, D. H.; Pedersen, J. A.; Geiger, F. M. Resonantly enhanced nonlinear optical probes of oxidized multiwalled carbon nanotubes at supported lipid bilayers. J. Phys. Chem. B 2017, 121, 1321-1329. DOI: 10.1021/acs.jpcb.6b10141

Hong, J.; Hamers, R. J.; Pedersen, J. A.; Cui, Q. A hybrid molecular dynamics/multi conformer continuum electrostatics (MD/MCCE) approach for the determination of the surface charge of nanomaterials. J. Phys. Chem. C 2017, 121, 3584-3596. DOI: 10.1021/acs/jpcc.6b11537

Plummer, I. H.; Wright, S. D.; Johnson, C. J.; Pedersen, J. A.; Samuel, M. D. Patterns of Chronic Wasting Disease prion excretion in three cervid species. J. Gen. Virol. 2017, 98, 1932-1942. DOI: 10.1099/jgv.0.000845


Christl, I.; Ruiz, M.; Schmidt, J.R.; Pedersen, J.A. Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium. Environ. Sci. Technol. 2016, 50, 9933-9942. DOI: 10.1021/acs/est.5b04693

Chesney, A.R.; Booth, C.J.; Lietz, C.B.; Li, L.; Pedersen, J.A. Peroxymonosulfate rapidly inactivates the disease-associated prion protein. Environ. Sci. Technol. 2016, 50, 7095-7105. DOI: 10.1021/acs/est.5b06294

Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceuticals and personal care products. Environ. Sci. Technol. 2016, 50, 525-541. DOI: 10.1021/acs/est.5b01546

Hang, M.N.; Gunsolus, I.; Wayland, H.; Melby, E.S.; Mensch, A.; Doğangün, M.; Geiger, F.M.; Pedersen, J.A.; Haynes, C.L.; Hamers, R.J. Impact of nanoscale lithium nickel cobalt manganese oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem. Mater. 2016, 28, 1092-1100. DOI: 10.1021/acs.chemmater.5b04505

Cui, Q.; Hernandez, R.; Mason, S.; Frauenheim, T.; Pedersen, J.A.; Geiger, F.M. Sustainable nanotechnology: Opportunities and challenges for theoretical/computational studies. J. Phys. Chem. B 2016, 120, 7297-7306. DOI: 10.1021/acs.jpcb.6b03976

Troiano, J.M.; Kuech, T.R.; Vartanian, A.M.; Torelli, M.M.; Sen, A.; Jacob, L.M.; Hamers, R.J.; Murphy, C.J.; Pedersen, J.A.; Geiger, F.M. On electronic and charge interference in second harmonic generation responses from gold metal nanoparticles at supported lipid bilayers. J. Phys. Chem. C 2016, 120, 20659–20667. DOI: 10.1021/acs.jpcc.6b01786

Melby, E.S.; Mensch, A.; Lohse, S.E.; Hu, D.; Orr, G.; Murphy, C.J.; Hamers, R.J.; Pedersen, J.A. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environ. Sci. Nano 2016, 3, 45-55. DOI: 10.1039/C5EN00098J

Kuech, T.R.; Hamers, R.J.; Pedersen, J.A. Chemical transformations of metal, metal oxide, and metal chalcogenide nanomaterials in the environment. In Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Biotoxicity; Xing, B.; Vectis, C.D.; Senesi, N. (eds.); Wiley-IUPAC Series on Biophysico-chemical Processes in Environmental Systems, Vol. 4., 2016; pp. 261-291.


Jacobson, K.H.; Gunsulos, I.L; Kuech, T.R.; Troiano, J.M.; Melby, E.S.; Lohse, S.E.; Hu, D.; Chrisler, W.B.; Murphy, C.J.; Orr, G.; Geiger, F.M.; Haynes, C.L.; Pedersen, J.A. Lipopolysaccharide density and structure governs the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ. Sci. Technol. 201549, 10642-10650. DOI: 10.1021/acs.est.5b01841

Doğangün, M.; Hang, M.N.; Troiano, J.M.; McGeachy, A.; Melby, E.S.; Pedersen, J.A.; Hamers, R.J.; Geiger, F.M. Alterantion of membrane compositional asymmetry by LiCoO2 ACS Nano 2015, 9, 8755-8765. DOI: 10.1021/acsnano.5b01440

Murphy, C.J.; Vartanian, A.; Geiger, F.H.; Hamers, R.J.; Pedersen, J.A.; Cui, Q.; Haynes, C.L.; Carlson, E.; Hernandez, R.; Klaper, R.D.; Orr, G.; Rosenzweig, Z. Outlook: Biological responses to engineered nanomaterials: Needs for the next decade. ACS Central Science 2015 1, 117-123. DOI: 1021/acscentsci.5b00182

Geiger, F.M.; Pedersen, J.A. How open is open access? J. Phys. Chem. Lett. 2015, 6, 1246-1248. DOI: 10.1021/acs.jpclett.5b00381

Troiano, J.M.; Olenick, L.L.; Kuech, T.R.; Melby, E.S.; Hu, D.; Lohse, S.E.; Mensch, A.C.; Doğangün, M.; Vartanian, A.M.; Torelli, M.; Ehimiaghe, E.; Walter, S.R.; Fu, L.; Wang, F.; Orr, G.; Murphy, C.J.; Hamers, R.J.; Pedersen, J.A.; Geiger; F.M. Direct probes of 4-nm diameter gold nanoparticles interacting with supported lipid bilayers. J. Phys. Chem. C 2015, 119, 534–546. DOI: 10.1021/jp512107z

Carlson, C.M.; Schneider, J.R.; Pedersen, J.A.; Heisey, D.M.; Johnson, C.J. Experimental infection meadow voles (Microtus pennsylvanicus) with sheep scrapie. Can. J. Vet. Res. 2015, 79, 68-73.


Mori, T.; Hamers, R.J.; Pedersen, J.A.; Cui, Q. Integrated Hamiltonian Sampling: A simple and versatile method for free energy simulations and conformational sampling. J. Phys. Chem. B 2014, 118, 8210-8220. DOI: 10.1021/jp501339t

Kim, M.-S.; Louis, K.M.; Pedersen, J.A.; Hamers, R.J.; Peterson, R.E.; Heideman, W. Using citrate-functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst 2014139, 964-972. DOI: 10.1039/C3AN01966G

Greiner, E.; Kumar, K.; Sumit, M.; Guiffre, A.; Pedersen, J.A.; Sahai, N. Adsorption of L-glutamic acid and L-aspartic acid on γ-Al2O3.Geochim. Cosmochim. Acta 2014, 133, 142-155. DOI: 10.1016/j.gca.2014.01.004

Smith, C.B.; Booth, C.J.; Wadzinsky, T.; Legname, G.; Chappell, R.; Johnson, C.J.; Pedersen, J.A. Humic substances interfere with detection of pathogenic prion protein. Soil Biol. Biochem. 2014, 68, 309-316.

Bishop, L.M.; Tillman, A.S.; Geiger, F.M.; Haynes, C.L.; Klaper, R.D.; Murphy, C.J.; Orr, G.; Pedersen, J.A.; DeStefano, L.; Hamers, R.J. Blogging as a tool to enhance graduate students’ written communication skills. J. Chem. Ed. 2014, 91, 1600-1605.

Pedersen, J.A. Prion diseases. Chapter 4 in Creating Life from Life: Biotechnology and Science Fiction; Berne, R.W. (Ed.); Pan Stanford Press, 2014. ISBN-10: 9814463582, ISBN-13: 978-9814463584.


Wiecinski, P.N.; Metz, K.M.; Peterson, R.E.; Heideman, W.; Hamers, R.J.; Pedersen, J.A. Toxicity of oxidatively degraded quantum dots. Environ. Sci. Technol. 2013, 47, 9132-9139. DOI: 10.1021/es304987r

Jacobson, K.H.; Kuech, T.R.; Pedersen, J.A. Attachment of pathogenic prion protein to model mineral surfaces. Environ. Sci. Technol. 2013, 47, 6925-6934. DOI: 10.1021/es3045899

Bar-Ilan, O.; Chuang, C.C.; Schwahn, D.J.; Yang, S.; Joshi, S.; Pedersen, J.A.; Hamers, R.J.; Peterson, R.E.; Heideman, W. TiO2 nanoparticle exposure spanning zebrafish development: photo-dependent toxicity at parts per billion concentrations. Environ. Sci. Technol. 2013, 47, 4726-4733. DOI: 10.1021/es304514r

Yang, S.; Louis, K.; Heideman, W.; Hamers, R.J.; Peterson, R.E.; Pedersen, J.A. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ. Sci. Technol. 2013, 47, 4718-4725. DOI: 10.1021/es3047334

Mori, T.; Hamers, R.J.; Pedersen, J.A.; Cui, Q. An explicit consideration of desolvation is critical to binding free energy calculations of charged molecules at ionic surfaces. J. Chem. Theo. Comp2013, 9, 5059-5069. DOI: 10.1021/ct400487e

Booth, C.J.; Johnson, C.J.; Pedersen, J.A. Microbial and enzymatic inactivation of prions in soil environments. Soil Biol. Biochem. 2013, 59, 1-15. DOI: 10.1016/j.soilbio.2012.12.016

Johnson, C.J.; Gilbert, PUPA; Albrecht, M.; Baldwin, K.L.; Pedersen, J.A.; Aiken, J.M.; McKenzie, D. Low copper and high manganese levels in prion plaques. Viruses 2013, 5, 654-662. DOI:10.3390/v5020654


Tomaszewski, J.E.; Madliger, M.; Pedersen, J.A.; Schwarzenbach, R.P.; Sander, M. Adsorption of insecticidal Cry1Ab protein to humic substances. 2. Influence of humic and fulvic acid charge and polarity characteristics. Environ. Sci. Technol. 2012, 46, 9932-9940. DOI: 10.1021/es302248u

Gao, J.; Hedman, C.; Liu, C.; Guo, T.; Pedersen, J.A. Transformation of sulfamethazine by manganese oxide in aqueous solution. Environ. Sci. Technol. 2012, 46, 2642-2651. DOI: 10.1021/es202492h

Bishop, L.M.; Yeager, J.C.; Chen, X.; Wheeler, J.N.; Torelli, M.D.; Benson, M.C.; Burke, S.D.; Pedersen, J.A.; Hamers, R.J. A citric acid-derived ligand for modular functionalization of metal oxide surfaces via “click” chemistry. Langmuir 201228, 1322-1329. DOI: 10.1021/la204145t

Sturm, R.M.; Kreitinger, G.; Booth, C.J.; Smith, L.M.; Pedersen, J.A.; Li, L. Absolute quantification of prion protein (90-231) using stable isotope-labeled chymotryptic peptide standards in a LC-MRM AQUA workflow. J. Am. Soc. Mass. Spectr. 201223, 1522-1533. DOI: 10.1007/s13361-012-0411-1

Johnson, C.J.; Aiken, J.M.; McKenzie, D.; Samuel, M.D.; Pedersen, J.A. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb). PLoS ONE 20127, e35383. DOI: 10.1371/journal.pone.0035383

Walters, R.H.; Jacobson, K.H.; Pedersen, J.A.; Murphy, R.M. Analysis of the elongation kinetics of polyglutamine peptide fibrils: A quartz crystal microbalance with dissipation study. J. Molec. Biol. 2012, 421, 329-347. DOI: 10.1016/j.jmb.2012.03.017

Bar-Ilan, O.; Louis, K.; Yang, S.; Pedersen, J.A.; Hamers, R.J.; Peterson, R.E.; Heideman, W. ­­­ Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicol. 20126, 670-679. DOI: 10.3109/17435390.2011.604438

Pedersen, J.A.; Somerville, R. Why and how are TSEs sometimes spread via environmental routes? In Decontamination of Prions; Deslys, J.-P.; Pocchiari, M.; Reisner, D.; Somerville, R. (eds); Düsseldorf University Press: Düsseldorf, Germany, 2012; 19-37.


Sibley, S.D.; Goldberg, T.L.; Pedersen, J.A. Detection of known and novel adenoviruses in cattle wastes by using broad-spectrum primers. Appl. Environ. Microbiol. 201177, 5001-5008. DOI: 10.1128/AEM.00625-11

Smith, C.B.; Booth, C.M.; Pedersen, J.A. Fate of prions in soils: A review. J. Environ. Qual. 2011, 40, 449-461. DOI: 10.2134/jeq2010.0412

Pedersen, J.A.; Simpson, M.A.; Bockheim, J.G. Kumar, K. Characterization of soil organic carbon in drained thaw lake basins of arctic Alaska by NMR and FTIR photoacoustic spectroscopy. Org. Geochem. 2011, 42, 947-954. DOI: 10.1016/j.orggeochem.2011.04.003

Johnson, C.J.; McKenzie, D.; Pedersen, J.A.; Aiken, J.M. Meat and bone meal and mineral feed additives may increase the risk of oral prion disease transmission. J. Toxicol. Environ. Health A 201174, 161-166. DOI: 10.1080/15287394.2011.529066


Gao, J.; Pedersen, J.A. Sorption of sulfonamide antimicrobial agents to humic-clay complexes. J. Environ. Qual. 2010, 39, 228-235. DOI: 10.2134/jeq2008.0274

Seyfried, E.E.; Newton, R.J.; Rubert, K.F., IV; Pedersen, J.A.; McMahon, K.D. Diversity of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline.Microb. Ecol. 201059, 799-807. DOI: 10.1007/s00248-009-9624-7

Jacobson, K.H.; Lee, S.; Somerville, R.A.; McKenzie, D.; Benson, C.H.; Pedersen, J.A. Pathogenic prion protein transport through soils. J. Environ. Qual. 2010, 39, 1145-1152.DOI: 10.2134/jeq2009.0137

Adkin, A.L.; Matthews, D.; Hope, J.; Maddison, B.C.; Somerville, R.A.; Pedersen, J. Risk of escape of prions in gaseous emissions from on-farm processing vessels Vet. Rec. 2010167, 28-29. DOI: 10.1136/vr.c3158

Lowry, G.V.; Holtze, E.M.; Bernhardt, E.S.; Dionysiou, D.D.; Pedersen, J.A.; Wiesner, M.R.; Xing, B. Environmental occurrence, behavior and ecological effects of engineered nanomaterials. J. Environ. Qual.2010, 39, 1867-1874. DOI: 10.2134/jeq2010.0297

Oleson T.A.; Sahai, N.; Pedersen, J.A. Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces. J. Colloid Interface Sci. 2010352, 327-36. DOI: 10.1016/j.jcis.2010.08.057


Jacobson, K.H.; Lee, S.; McKenzie, D.; Benson, C.H.; Pedersen, J.A. Transport of the pathogenic prion protein through landfill materials. Environ. Sci. Technol. 2009, 43, 2022-2028. DOI: 10.1021/es802632d

Metz, K.M.; Magham, A.N.; Bierman, M.J.; Jin, S.; Hamers, R.J.; Pedersen, J.A. Engineered nanomaterial transformation under oxidative environmental conditions: Development of an in vitro biomimetic assay. Environ. Sci. Technol. 200943, 1598-1604. DOI: 10.1021/es802217y

King Heiden, T.C.; Wiecinski, P.N.; Magham, A.N.; Metz, K.M.; Nesbit, D.; Pedersen, J.A.; Hamers, R.J.; Heideman, W.; Peterson, R.E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 200943, 1605-1611. DOI: 10.1021/es801925c

Wiecinski, P.N.; Metz, K.M.; Mangham, A.N.; Jacobson, K.H.; Hamers, R.J.; Pedersen, J.A. Gastrointestinal biodurability of engineered nanomaterials: Development of an in vitro assay. Nanotoxicol20093, 202-214. DOI: 10.1080/17435390902859556

Liang, C.; Pedersen, J.A.; Balser, T.C. Aminoglycoside antibiotics may interfere with microbial amino sugar analysis. J. Chromatogr. A 20091216, 5296-5301. DOI: 10.1016/j.chroma.2009.05.010

Russo, F.; Johnson, C.J.; Johnson, C.J.; McKenzie, D.; Aiken, J.M.; Pedersen, J.A. Degradation of the pathogenic prion protein by a manganese mineral found in soils. J. Gen. Virol. 200990, 275-280. DOI: 10.1099/vir.0.003251-0

Johnson, C.J.; Gilbert, P.U.P.A.; McKenzie, D.; Pedersen, J.A.; Aiken, J.M. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity. BMC Res. Notes 20092, 121-125.


Sibley, S.D.; Pedersen, J.A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environ. Sci. Technol. 2008, 42, 422-428. doi: 10.1021/es071467d

Bialk, H.M.; Pedersen, J.A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ. Sci. Technol. 2008, 42, 106-112. doi: 10.1021/es070779d

Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; McKenzie, D.; Aiken, J.M.; McMahon, K.D.; Pedersen, J.A. Persistence of pathogenic prion protein during simulated wastewater treatment processes. Environ. Sci. Technol. 200842, 5254-5259. doi: 10.1021/es703186e


Johnson, C.J.; Pedersen, J.A.; Chappell, R.J.; McKenzie, D.; Aiken, J.M. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathogens 20073, 874-881 (e93). doi: 10.1371/journal.ppat.0030093

Bialk, H.M.; Hedman, C.; Castillo, A.; Pedersen, J.A. Laccase-mediated Michael addition of 15N-sulfapyridine to a model humic constituent. Environ. Sci. Technol. 200741, 3593-3600. doi: 10.1021/es0617338

Ma, X.; Benson, C.H.; McKenzie, D; Aiken, J.M.; Pedersen, J.A. Adsorption of pathogenic prion protein to quartz sand. Environ. Sci. Technol. 200741, 2324-2330. doi: 10.1021/es062122i

Gu, C.; Karthikeyan, K.G.; Sibley, S.D.; Pedersen, J.A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 200766, 1494-1501. doi: 10.1016/j.chemosphere.2006.08.028

Soliman, M.; Pedersen, J.A.; Park, H.; Castaneda-Jimenez, A.; Stenstrom, M.K; Suffet, I.H. Human pharmaceuticals, antioxidants and plasticizers in wastewater treatment plant and water reclamation plant effluents. Wat. Environ. Res. 200779, 156-167. doi: 10.2175/106143006X111961


Johnson, C.J.; Phillips, K.E.; Schramm, P.T.; McKenzie, D.; Aiken, J.M.; Pedersen, J.A. Prions adhere to soil minerals and remain infectious. PLoS Pathogens 20062, 296-302 (e32). doi: 10.1371/journal.ppat.0020032

Rubert, K.F., IV; Pedersen, J.A. Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environ. Sci. Technol. 200640, 7216-7221. doi: 10.1021/es060357o

Pedersen, J.A.; Yeager, M.A.; Suffet, I.H. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for Total Maximum Daily Load development. Environ. Sci. Technol. 200640, 2120-2127. doi: 10.1021/es051677v

Schramm, P.T.; Johnson, C.J.; Mathews, N.E.; McKenzie, D.; Aiken, J.M.; Pedersen, J.A. Potential role of soil in the transmission of prion disease. Medical Mineralogy and Geochemistry. Rev. Mineral. Geochem. 2006, 64, 135-152. doi: 10.2138/rmg.2006.64.5

Pedersen, J.A.; McMahon, K.D.; Benson, C.H. Prions: Novel pathogens of environmental concern? J. Environ. Eng. 2006132, 967-969. doi: 10.1061/(ASCE)0733-9372(2006)132:9(967)


Gao, J.; Pedersen, J.A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005, 39,9509-9516. doi: 10.1021/es050644c

Bialk, H.M.; Simpson, A.J.; Pedersen, J.A. Cross-coupling of sulfonamide antimicrobial agents to model humic constituents. Environ. Sci. Technol. 2005, 39, 4436-4473. doi: 10.1021/es0500916

Pedersen, J.A.; Soliman, M.A.; Suffet, I.H. Human pharmaceuticals, hormones and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J. Agric. Food Chem. 2005, 53, 1625-1632. doi: 10.1021/jf049228m

Rose, P.E.; Pedersen, J.A. Fate of oxytetracycline in streams receiving aquaculture discharges: Model simulations. Environ. Toxicol. Chem.2005, 24, 40-50. doi: 10.1897/03-640.1

Prior to 2005

Soliman, M.A.; Pedersen, J.A.; Suffet, I.H. Rapid gas chromatography-mass spectrometry screening method for human pharmaceuticals, hormones, antioxidants and plasticizers in water. J. Chromatogr. A 2004, 1029, 223-227. doi: 10.1016/j.chroma.2003.11.098

Lin, C.-H.M.; Pedersen, J.A.; Suffet, I.H. Influence of aeration on hydrophobic organic contaminant distribution and flux in estuarine sediments. Environ. Sci. Technol. 2003, 37, 3547-3554. doi: 10.1021/es026048p

Pedersen, J.A.; Yeager, M.A.; Suffet, I.H. Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater. J. Agric. Food Chem. 2003, 51, 1360-1372. do: 10.1021/jf025953q

Pedersen, J.A.; Schweitzer, L.E.; Lin, C.-H.; Suffet, I.H. Effect of oxic state on nonpolar organic contaminant distribution, mobility and bioavailability in estuarine sediments. Israel J. Chem. 2002, 42, 109-118. doi: 10.1560/569Q-NH11-LXPM-KH1Q

Pedersen, J.A.; Yeager, M.A.; Suffet, I.H. Characterization and mass load estimates of organic compounds from agricultural irrigation runoff. Wat. Sci. Technol.2002, 45, 103-110.

Jones, K.B.; Heggem, D.T.; Wade, T.G.; Neale, A.C.; Ebert, D.W.; Nash, M.S.; Mehaffey, M.H.; Hermann, K.A.; Selle, A.R.; Augustine, S.; Goodman, I.A.; Pedersen, J.A.; Bolgrien, D.; Viger, J.M.; Chiang, D.; Lin, C.J.; Zhong, Y.; Baker, J.; Van Remortel, R.D. Assessing landscape condition relative to water resources in the western United States: a strategic approach. Environ. Monitor. Assess.2000, 64, 227-245. doi: 10.1023/A:1006448400047

Pedersen, J.A.; Gabelich, C.J.; Lin, C.-H.; Suffet, I.H. Aeration effects on the partitioning of a PCB to anoxic estuarine sediment pore water dissolved organic matter. Environ. Sci. Technol. 1999, 33, 1388-1397. do: 10.1021/es980717a